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Abstract

In this paper we apply the hyperailer quotient construction to Lie groups with a left invariant
hyper-Kahler structure under the action of a closed abelian subgroup by left multiplication. This
is motivated by the fact that some known hypeiker metrics can be recovered in this way by
considering different Lie group structuresBlii x H4 (H: the quaternions). We obtain new complete
hyper-Kahler metrics on Euclidean spaces and give their local expressions.
© 2005 Elsevier B.V. All rights reserved.

MSC: 53C26; 22E25; 53D20

JGP SC: Differential geometry; Complex manifolds; Lie groups

Keywords: Solvable Lie groups; Hyper-&hler metrics; Hyper-Ehler quotient

1. Introduction

Hyper-Kahler manifolds, which generalize the notion @ftder manifolds, appear related
to solutions of well-known equations in mathematical physics. A hygnr metric on a
manifold M is a Riemannian metrig which is Kahler with respect to two anticommuting
complex structured; and.J, on M.
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It is not easy to obtain explicit examples of such manifolds. Hyp&@M&r reduction
[8] allows to construct hyper-&hler manifolds from others admitting a group acting by
tri-holomorphic isometries. Families ohiddimensional hyper-Ehler quotients with a tri-
holomorphicT"-action were constructed if%,2]. In particular, in[2] the geometry and
topology of hyper-Kahler quotients ofl¢ by subtori of 7 has been studied.

The hyper-Kahler quotient construction has been also applidd]ito the flat spacél?
to obtain some monopole moduli space metrics in explicit form ugiidl5], for instance
the Taubian-Calalil6] and the Lee—Weinberg-Yi metr[é1]. These are constructed by
considering the following actions & onH x H™ (resp.R” onH™ x H™):

RxHxH" > HxH", /(g w,...,wn)— (+q, w,...,ewy),
R™ x H" x H" — H"™ x H", ((t1,---»tm), (1, -+ » Q> W, + -+ s Wiy))
- (tl+ql9 AL ] tm +Qm, el<01’T)wl5 ey el<9m’T>wm)9

whered € GL(m, R), T = (11, ..., tm), 6p are the rows ob and(, ) is the Euclidean inner
product inR™. The first action gives rise to the Taubian-Calabi metric, which coincides with
the Taub-Nut metric fog = 1, and the second one corresponds to the Lee—Weinberg-Yi
metric. We show that in both cases the metric can be recovered by enddwirig” (resp.

H™ x H™) with a hyper-Kahler Lie group structure and taking the quotient with respect to
a suitable closed abelian subgroup.

In the present work we study hyperaKler quotients starting from a Lie groapwith
a left invariant hyper-khler structure. Such a group is necessarily flat since it is Ricci
flat and homogeneous (sgig). It follows from [12] thatG must be two-step solvable and
whengG is simply connected; is a semidirect product of the forfii? xy H?, wheref is
a homomorphism fronil” to 79, a maximal torus in Sg{ (seeProposition 3.7and(13)).

This leads us to get a characterization of hypéhler Lie groups.

We take a connected closed abelian subgi®ug@ < p) of H? which acts orG by left
translations, hence the action is free and the moment map has no critical points. This action
is tri-Hamiltonian, therefore the hyperéKler quotient constructid8] can be applied. We
prove that the metric obtained on the hypeikier quotient is complete and the quotient
is diffeomorphic to an Euclidean space. Since fieaction commutes with an action of
the torusT, if I = p the 4-dimensional hyper-Ehler quotient admits a tri-holomorphic
T?-action. Such action has a unique fixed point wjpea q4. In this way we obtain new com-
plete hyper-Kahler metrics which generalize the Taubian-Calabi and the Lee—Weinberg-Yi
metrics. Using the same method a$4r5,10] we obtain a local expression of the hyper-
Kahler quotient metrics. This expression is given in terms of the structure constants of the
corresponding Lie groufl? x, H4.

2. Preliminaries

Let (g, g) be a metric Lie algebra, that ig,is a Lie algebra endowed with an inner
productg. The Levi—Civita connection associated to the metric can be computed by
25(VxY, Z) = g([X. Y], Z) — g([¥. Z], X) + ¢([Z. X]. 1), 1)
foranyX, Y, Zing.
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A hypercomplex structure o is a triple of complex structurelgly }o=1,2.3 satisfying
the quaternion relations

.13 =—-id, =123, J1Jo = —JoJ1 = J3,

together with the vanishing of the Nijenhuis teng@y(X, Y) = 0, for anyX,Y € g and
a =1, 2, 3. Here, the Nijenhuis tensor stands for

Na(Xa Y) = Ja([Xa Y] - [JozX, JotY]) - ([JaXs Y] + [X, Jay]),

whereX, Y € g.
Let g be a Lie algebra endowed with a hypercomplex structuigé,—1,2 3 and an inner
productg, compatible with the hypercomplex structure, that is

g(X.,Y) = g(1X, 1Y) = g(J2X, JoY) = g(J3X, J3Y),

forall X, Y € g. We will say that §, {J,}, g) is a hyper-Kahler Lie algebra whery( J,, )
is a Kahler Lie algebra, for eaah thatis,VJ, = 0, whereV is the Levi—Civita connection
of g. This is equivalent tod, = 0, wherew,, are the associateddler forms defined by
we(X,Y) = g(JuX,Y), X, Y € g.

If Gis aLie group with Lie algebrgthen the above structures grean be left translated
to all of G obtaining invariant hyper-ghler structures og.

Note that a Lie group with an invariant hypegKler structure is necessarily flat since a
hyper-Kahler metric is Ricci flat and in the homogeneous case, Ricci flatness implies flatness
(sed1]). Examples of non commutative Lie groups carrying a flat invariant metric are given
by T% x R™ whereT* is a torus in SOf). The next proposition, which is a consequence
of the characterization of flat Lie algebras giveili], shows that this family of examples
essentially exhausts the class (see f8$p This will allow us to give a characterization of
hyper-Kahler Lie algebras as a special class of subalgebr&s af e(4g), wheree(4q) =
s0(4g) x R% is the Euclidean Lie algebra.

Proposition 2.1 (Milnor [12]). Let (g, g) be a flat Lie algebra. Then g decomposes orthog-
onally as

g=si0dheg’

where 3(g) is the center of g, b is an abelian Lie subalgebra, the commutator ideal g* is
abelian and the following conditions are satisfied.

(i) ad:h — so(gl) is injective and g* is even dimensional,
(i) ady = Vyx forany X € 3(g) ® b.

In particular, g is isomorphic to a Lie subalgebra of R® x e(gl), where s = dim 3(g).
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Proof. By [12] a flat Lie algebrag, ¢g) decomposes orthogonally as
g=hob, 2

where} is an abelian Lie subalgebra,is the abelian ideal defined iy € g : Vp = 0}
and

adxib—>b

is skew-symmetric, for an¥ € h. Note that the above conditions imply thatyaid skew-
symmetric org for any X € b, hence,

ady = Vy, forany X €. 3)
The above equation and the choicebaimply
ad :h — so(g) (4)
is injective.
We notice next that the decompositi¢®) implies thatg® < b, henceb decomposes
orthogonally as

b=v® g

We show below thab = 3(g), wherej(g) denotes the center gf. In particular,g will
decompose orthogonally as

g=s@ohdg

with h andg! abelian and such that (i) holds. To show thats even dimensional, assume
that dimg! = 2m + 1. Since ag, X € b, is a commutative family of endomorphisms in
so(2m + 1), they are conjugate to elements in a maximal abelian subalgefré&of + 1),
hence there existg e g! such that ag(Z) = 0 for any X € b, thereforeZ € 3(g) N g, a
contradiction.

Since ag : g* — g' is skew-symmetric, for any € b, then it preserves. Therefore,
[X,0] cvngl=0forX e handv C 3(g) follows. On the other hand, if € 3(g), then:

0=g([¥. X]. U) = g(¥. [X, U]),

for everyX e b, U € gt, that is,3(g) L g* sinceg! = [h, g']. From3(g) N = 0 one has
thatv = 3(g).

Finally, using(1) one can comput®y = 0 for Y € 3(g). This together wit(3) implies
(ii) and the proposition follows. [

We will say that two flat Lie algebrag{, g1) and @,, g2) are equivalent if there exists an
orthogonal Lie algebra isomorphism g; — g,. Note thaty : 3(g,) — 3(g2), n : 93 — g3
and therefore; : h1 — b, (seeProposition 2.1 Let ad : h; — 5o(g,.1), i=12, be the
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corresponding injective maps induced by the adjoint representatigntimen the following
diagram is commutative:

b1
nl
b2

adi
—

2 so(gh)

wherel,, denotes conjugation by It follows fromProposition 2. that every flat Lie algebra
with 2m-dimensional commutator anddimensional center is equivalent B x R¥ x ,
R?", wherep : R — so(2m) is injective,o(R¥)R?" = R?", the only non zero Lie brackets
being

[X,Y] = p(X)Y, X eRF yeR?™

Given a flat Lie algebr®&* x (R¥ x , R?"), the family{p(T) : T € R} C so(2m) is an
abelian subalgebra, then it is conjugate by an element in/8(2a subalgebra of the
following maximal abelian subalgebra ef(2m):

0 —¢
o1 O
t" = tou €R
0 _¢m
¢m O
with respect to an orthonormal basigi, . . ., fon} of RZ". In particular,k < m and we

may assume that any flat Lie algebra is equivalent to a Lie algebra sugh(®fatc ¢”.
Leto = (Qg) be the realn x k matrix of rankk such that

0 —6f
6y 0
plea) = . l=acsk (%)
0 -6
6% 0
where{er, ..., ex} is an orthonormal basis &*. The conditionp(R¥)R2" = R2" is equiv-

alent to the fact that every roéy; of 6 is non zero.
We introduce some notation that will be needed in the next resultMi(etm; k) be the
set ofm x k real matrices of rank. M(k, m; k) can be embedded in Erf{, so(2m)) by
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means of the inclusiop:
M(k, m; k) — End®*, so(2m)), 6+ pp,

wherepy is as in(5). We identify M (k, m; k) with its image undep and let Ok) x O(2m)
act onM (k, m; k) as follows:

O(k) x O(2m) x M(k, m;k) — M(k,m;k), (A, B, pg) — Bpa)B ", (6)
where BpgB~1 € EndRF, so(2m)) is defined byBpgB~1(T) = Bpg(T) B~1, T € R*. It
follows from the definition of equivalence between flat Lie algebras that

RF x p, R?" = R i, R2"

if and only if pg andpy lie in the same Q) x O(2mn)-orbit.
The next proposition summarizes the above results and gives the classification of flat Lie
algebras that will be needed in the next section (see[@]30

Proposition 2.2. Let (g, g) be a flat Lie algebra, dim g* = 2m, dim 3(g) = s. Then there
exists 0 = (9%‘) € M(k, m; k) such that 0g # O for every 1 < B <m and g decomposes
orthogonally as

g =R x (R x,, R?™),
where R¥ X pg R2" has an orthonormal basis {e1, ..., ek, f1,..., fom}and T € R* acts
on R?" in the following way:

0 —(T, 61)
(T, 01) 0

po(T) = , (7
0 _<Ta 0m>
(T, Om) 0

where () denotes the Euclidean inner product on R*. Moreover,
k 2m ~ ok 2m
R D(pﬁ R =R |><p0, R

as flat Lie algebras if and only if pg and py lie in the same O(k) x O(2m)-orbit under the
action (6).
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Remark. Note that the Lie algebr* x ,, R?" is a Lie subalgebra of the Euclidean Lie
algebrae(2m):

T W
RX X pg RZ" < e(2m), (T, W) > (Peé ) 0) ,

T € R¥, W € R?", However, the inner product d&* x ,, R?" does not coincide with the
one induced from(2m).

The next corollary follows from the description givenRmoposition 2.2
Corollary 2.1. Any even dimensional flat Lie algebra is Kdahler flat.

Proof. Let g, = R* x (R¥ x,, R?") be as inProposition 2.2and let/ be the orthogonal
endomorphism ofy,, leavingR® x R¥ invariant and such that? = —id, Jf2i11 = fai,
i=0,...,m— 1. The integrability ofJ, that is, the vanishing ofv,, follows from
0o(T)J = Jpg(T), for any T e R¥. Moreover,VJ = 0 since Vy = py(T), for T e Rk,
Therefore §, J, g) is Kahler flat. O

3. Hyper-Kibhler Lie groups

Inthis section we shall appRroposition 2.10 give a characterization of the Lie algebras
carrying a hyper-l&hler structure{(/,}, g).

Proposition 3.1. Let (g, {Jo}, 8), @ = 1,2, 3, be a hyper-Kdhler Lie algebra. Then g
decomposes orthogonally as

g=tog. @ cCt
with both t and gl abelian and Jy-invariant, « = 1, 2, 3, such that

(i) adxyJy, = Jpady, forany X e t,a = 1,2, 3;
(i) g(adyY, Z)+ g(Y,adyZ) =0,forany X e t, Y, Z € g.

Proof. Since a hyper-Khler Lie algebra is flgtl], g decomposes orthogonally as
g = 3(g) ® b @ g* and the conditions ifProposition 2.%are satisfied. Set

t=3(g)@h.

We show next that ifd, {J,}, g), @ = 1, 2, 3, is a hyper-Khler Lie algebra thetandg! are
Je-invariant,a = 1, 2, 3, and condition (i) is satisfied. Observe thakife t and B € g*,
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using thatv J, = 0 and (ii) of Proposition 2.1one has
Jo[X, B] = J,VxB = [X, Jo4B],

therefore, (i) follows. Sincg! = [h, g}], the above equation also implies thgtis J,-
invariant and the decompositiam g* satisfies the desired properties]

We will say that two hyper-Ehler Lie algebrasy( {J.}, g) and @', {J.}, ') are equiva-
lent if there exists an equivaleng®f metric Lie algebras such thaf, = J,n, ¢ =1, 2, 3.
Consider the hypercomplex structure on
H? = {(W1, ..., W) : Wy = ttg + Yol + Zaj + Wak g, Yo, Za, Wa € R}
given by right multiplication by-i, — j, —k:
J1 =R,

J2=R_j, J3=R_4.

We identify H? = R* with the Euclidean metric and we let $p& O(4g) N GL(g, H),
where

GL(g. H) = {T € GL(4q.R) : TJy = J,T,a = 1, 2, 3}.

Let t7 be the following maximal abelian subalgebra of the Lie algeb(a) of Sp):

0 —¢1 0 O
b1 0 0 0
0 0 0 —¢1
0 0 ¢ O
¥ — ¢ eR 8)
0 —¢, 0O 0
¢ O 0 0
0 0 0 —¢
0O 0 ¢ O

We obtain the analogue &froposition 2.2y arguing as before. Observe that, in this case,
R* x (Rk X 5o HT) = R x (RF X 5, H?) as hyper-Kahler Lie algebras if and only s and

og lie in the same Spf) x Sp(g)-orbit, wheres 4+ k = 4p and the action of Sp() x Sp()

is the analogue a).

Proposition 3.2. Ler (g, {J,}, ) be a hyper-Kiihler Lie algebra with dim g = 4q and
dim3(g) = s. Then there exists 0 = (0%) € M(k, q;k), with s + k = 4p, such that 6g # 0
forl<pB <qgand

g =R x (RF i, HY).
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R* 0o HY is the Lie algebra with orthonormal basis
ler,1 <1 <k, fa, fal, faJ, fak,1 < a < g}

such that T € R* acts on HY by

pi(T)
po(T) = , 9)
pg(T)
where
0 —(T, 6p) 0 0
8 B (T, 6p) 0 0 0
Do (T) = 0 0 0 (T, 6)
0 0 (T, 6p) 0

and () denotes the Euclidean inner product on R¥. The Lie algebra R* x (R¥ x pp H) is
hyper-Kdhler withits natural hypercomplex structure, obtained by extending R_;, R_;, R_j
on HY by any triple of complex endomorphisms on R* x R¥ satisfying the quaternion
relations, and the canonical inner product. Moreover,

RY x (RF x,, HY) = R® x (RF x ,, HY)
as hyper-Kiihler Lie algebras if and only if pg and py lie in the same Sp(p) x Sp(g)-orbit.
3.1. Examples
As a consequence @froposition 3.2ve have that there is a one parameter family of
eight-dimensional hyper-&hler Lie algebragy:
g = R3 x (R xg H), (10)
whereR x ¢ H has an orthonormal badis, f1, fii, f1J, fik} ande; acts oriH as follows:
0 -6
(1) 6 0
poler) = 0 —o
6 0
Note that these are pairwise non equivalent flat metric Lie algebras for different values of
0, but they are isomorphic as Lie algebrasdog O.

Indimension 12 there are infinitely many non isomorphic Lie algebra structures admitting
hyper-Kahler metrics. In fact, for a fixed real numbeg 0 we defing;, = R3 x (R x H?),
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whereR x ; H? has an orthonormal basis as in the statemeRtaposition 3.2vith e; acting
onH? as follows:

0 -1
1 0

ps(e1) =

It turns out thafy, andg, are non isomorphic fas # r.
We describe now the Lie bracket gp = R¥ i, H:

[(X, W), (X', W)]=(0,i((X, 91)Wi— (X', 00W1), ..., i({X, Qq)Wz; — (X, 0,)Wy))
= (0, po(X)W' — po(X")W), (11)
X, X' € RK,
The product on the simply connected Lie gratip = R¥ x4 H¢ with Lie algebrag, is
given as follows:
X, W) - (X', W)y=X+X, W+oX)W), (12)
whereX, X' € RK, W, W’ e HY, W' = (W, ..., W;) and
X)W = (€Xmwy, .. dXlw). (13)

Using that &, W)~1 = —(X, 6(— X)W), conjugation by X, W) is given as follows:
I w) (X', W) = (X, W) - (X', W) - (X, W)~ = (X', W+ 600 W' — 6(X")W)

and therefore
Ad(X, W)(X', W =(X", 0(X)W") + [(0, W), (X', 0)]= (X", 6(X)W' — pp(X")W),
(14)

for X, X" e RF, w, W’ € H4.
In coordinatesxs, . .., xk, W1, ..., W,), whereW; = (u;, y;, zj, w;), the left invariant
flat metricg onR¥ x ,, Y is the Euclidean metric

k q
g=>_ d?+> (du? + dy? + dc? + dw?).
j=1 j=1
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For the constructions of the next section, we will need to express the Euclidean metric

onHY in suitable coordinates. Any quaternion may be written as
Wg =ei‘[’f‘/2a,3, B=1....q,

with ¥g € (0, 47] andag a pure imaginary quaternion, so thagt= —ag. Let
rg = WgiWp = agiag = —agiag.

The flat metric orH? in coordinatesig, rg), 8 =1, ..., g, is given by

1 /1
7 > (rﬁ drg + rp(dys + 24 - drﬂ)2> , (15)
B=1

where

1
rg = |rgl, curl(g) = grad(rﬂ>

(the curl and grad operations are taken with respect to the Euclidean mefRig with
cartesian coordinatas).

4. Main properties of the hyper-Kihler quotient metrics

According toProposition 3.2ny simply connected Lie group with a left invariant hyper-
Kahler structure is of the foriy = R® x (R x4 HY) (k < g, s + k = 4p) with the hyper-
Kahler metricg = g1 x g2, Whereg; is the Euclidean metric oR*® x R* and g, is the
Euclidean metric ofil?. Let g, be the Lie algebra ofig. The associated &hler forms:

we((X1, W1), (X2, W2)) = g(Ju(X1, W1), (X2, W2)), (X1, W1), (X2, W2) € gy,

o =1, 2, 3, when left translated t6y become:

2

wy = a)i + wy,
wherew, j=1,2,a =1, 2, 3,arethe standard symplectic forms on a vector space. There-
fore, (G, g, wy) IS equivalent, as a hyperakler manifold, to the product

(R x R, g1, {w3}) x (HY, g2, {03)). (16)

We will apply the hyper-Khler quotient construction if8] to the case whe# is the
connected closed abelian Lie subgrd®pc R¥ with Lie algebral = spagfes, ..., e/}
such that is isotropic with respect ta, for eacha. The action ofL on G4 will be given
by left translations, therefore it preserves the hypahliér structure. We recall next the
guotient construction in our particular case.
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Let Xy be the vector field generated by the actio.pthat is, the right invariant vector
field such thatty, = V, whereV € [. Observe that

0= Ly, 0y = d(i(Xv)wy) + i(Xy) dwyg,

wherei(Xy)w, denotes the 1-form obtained by taking the interior product Wigh Since
the action is symplectic with respectdg, « = 1, 2, 3, we have that(Xy)wy, ¢ = 1, 2, 3,
is closed Gy is simply connected, thuH&R(Gg, R) = {0} andi(Xy)w, is exact, that is,

i(Xy)wy = dud)”

where (12) is a Hamiltonian function associatedWtoPutting all these functions together,
we obtain a map into the dual space of the Lie algebiia of

ul Gy — 1*
defined by
o(X, W)(V) = ()" (X, W).

Thereis a choice of constants in the definitiopff since each functiond’)" is determined
up to an additive constant. When the ambiguities in the choicag)f (can be adjusted to
makep! L-equivariant, wheré acts on* by the coadjoint action, one has the hypeikier
moment map

WGy — " ®ImH,

defined byu? = ufi + u4j+ ubk. Our choice ofL implies thatu? is L-equivariant for
eacha. Indeed, the actioA of L on Gy given by left translations:

AL x Gg— Go,  ((V,0), (X, W) = (V,0)- (X, W) = (V + X, (V)W)
(7)

(recall(12)) can be viewed as a diagonal action/of
A(V)(X, W) = (AL(V)X, Aa(V)W),

whereA1 acts by left translations oR* x R¥ andA» is a linear symplectic action dH?.
The moment map’ corresponding t@ can be obtained by adding up the moment maps
of A1 andA; since(16) holds. By a direct calculation one has:

KX WY(Y) = 0ulV, X) + Sonps(V)W, W),

The L-equivariance of the first term follows sindeis isotropic and the second term is
L-equivariant since it is the moment map of a linear action on a symplectic vector space
(se€f6]).
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Let £ € 3 ® R® be a regular value for?, wherej is the subspace df of invariant
elements under the coadjoint action, and consider the quotient dpdg€)~1(¢).
Our hypotheses imply:

(1) 3 coincides withl* sinceL is abelian;

(2) the action of. on Gy is free, hence it is free omf)~1(&), for any& = £1i + &/ + &3k
in the image Imu? of 1f. In particular, any e Im ? is a regular value of the hyper-
Kahler moment map;

(3) sinceL is closed inGy and acts by left translations, the set of right codet&y is a
complete Riemannian manifold, not necessarily homogeneous.

Inthe next theorem we show th&a\(u")fl(g) is a Hausdorff manifold for any € Im .,
therefore, according t[8], the hyper-Kahler metric onGy induces a hyper-&hler metric
on L\(1?)~1(£). We also state the main properties of the resulting metrics.

Theorem 4.1. Let (G, {Jy}, &) be a simply connected hyper-Kdhler Lie group, so that
Gy = R* x (RF xy HY), k < q, s + k = 4p. Fix a connected closed abelian isotropic sub-
group L C RF acting on Gy by the action A as in (17) and denote by 7w . Gg — L\G the
associated Riemannian submersion. Then

(1) The action A of L on Gy is free and preserves both, the metric g and the symplectic
forms wy, 0 = 1, 2, 3. The L-equivariant moment map is ue = ugi + ugj + ,ugk, with
ug given by

HOK WY(V) = 00V, X) 4 Soalpo(VIW, W),

forany X e RS x RK, W e HY, V € L.

(2) L\Gy is a complete Riemannian manifold of non negative sectional curvature. More-
over, the fibers of 7 are totally geodesic;,

(3) Forany & € Imu?, L\(?)~Y(&) is a closed embedded submanifold of L\Gy;

(4) The metric on L\(u?)~1(&) which makes 7 a Riemannian submersion coincides with
the restriction of the given one in L\Gy. In particular, the hyper-Kdihler metric on the
quotient L\(11%)71(&) is complete.

Proof. The proof of part (1) was done in the paragraph containing E6.

The left invariant metrig on Gy induces in a natural way a metgoh L\ Gy such that
the natural projection

7 :(Gg, g) = (L\Gy, 3)

is a Riemannian submersion. The completenessiofplies thatg'is also complete (see
[7]). By O'Neill’s formula (14, 3, Corollary 1), the sectional curvature df\ Gy is non
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negative. Note thatc [g,, g4]*, hence the fibers of are totally geodesic sincérV = 0
for T, V € [ (seeProposition 2.1 This proves part (2).

If £ e Imu?, thené is a regular value oft? and sinceu? is L-equivariant, it induces a
map

i I\Gg — " @ ImH.

We haveL\(1?)~1(¢) = (%) ~1(¢), and¢ is a regular value of.?, thereforeL\ (1) ~1(&)
is a closed/-dimensional embedded submanifoldiofGy (d = dim Gy — 4dim L), and
part (3) follows.

The first claim of part (4) follows from the fact that the metric qif~1(¢) is the
one induced from @y, g) and by observing that is a Riemannian submersion. This,
together with parts (2) and (3), implies that the induced hypani&r metric on the quotient
L\(u?)~1(¢) is complete. O

5. Examples

In the next examples we show that it is possible to describe several known families
of hyper-Kahler metricg4] in a unified way, by applying the quotient construction to
hyper-Kahler Lie groups5 under the action of a suitable closed abelian subgroloy left
translations.

5.1. Taub-Nut metric
Let g, be the one parameter family of hype&Hler Lie algebras in dimension 8 (see
(10)) and Gy the corresponding simply connected Lie groups. Let R be the sub-

group of Gy = H xy H given by L = {(z, 0), t € R}, acting onGy by left translations,
that is:

L x Gy — Gy, @ (g, w)) = (t +q, eietw).

Observe that Ini acts trivially on the second factor. The corresponding hypni&r
moment map is

w = —Im(qg) — g(Re@'wilﬂ)i + Re(wjw)j + Refwkw)k) = —Im(g) + glﬂiw.

It can be checked that’ is L-equivariant. The complete hyperKler metric on
L\(?)~1(0) is the Taub-Nut metric with parameter® [4].
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5.2. Generalized Taubian-Calabi metric

Letd =(01,...,60,) € R", Gy = H xg H" andL = {(¢,0) : t € R} acting onGy by
left translations:

L x Gy — G, @ (g, w1, ..., wy) — (t+q, eieltwl, e eie’”’wm).

Form = 1 this is the Lie group considered in the first example. The corresponding hyper-
Kahler moment map is

1o . S o
w = —Im(q) — > Z@ﬁ(RE(lwﬁlwﬂ)l + Refwgjwg)j + Re(wgkwg)k)
p=1

1 m
=—Im(g) + 5 ;é)ﬁwﬂiwﬁ.

Whendg = 1, for eachp, the complete hyper-&hler metric orL\ (1?)~1(0) coincides with
the Taubian-Calabi metrid6,4].

5.3. Lee—Weinberg—Yi metric
Letd € GL(m, R), Gy = H™ xo H" andL ~ R™ defined by
L={((tr, ..., tw), 0) 1 t; € R}

acting onGy by left translations:

L x Gg — Gy, ((t1, ..o tm)s (g1s - -+ s Gms W, « . ., Wiy))
- (tl +q1, .oyt + G, eiwl’T)wla ceey eiwm’r)wm),
whereT = (14, ..., tn), 0g are the rows ob and(, ) is the Euclidean inner product iR™”.

The corresponding hyperdfler moment map is

1 m . 1 m .
w = | —Im(q1) + > Zeéﬁﬂzwﬁ, ey —Im(gn) + > ZGZ’UTglU),g
p=1 p=1

The complete hyper-&hler metric onL\ (%) ~1(0) is the Lee—Weinberg—Yi metric with
(%) =671[11,13,4]

6. Topology of the quotient and local description of the metrics

Let G4 be the simply connected hypefaKler Lie grougR® x (R¥ x4 HY) (s + k = 4p,
k <gq),0 € M(k, g; k) ando(H?) = HY. Let L C R¥ be a closed abelian subgroup with Lie
algebral = spamg{es, ..., e} such that is isotropic with respect ta,, for eachw.
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Let 77 be the maximal torus of Sg) with Lie algebrat? (see(8)) whose elements are
of the form:

B(¢1)
B= , (18)
B(¢q)
wheregg € R and B(¢g) is the following 4x 4 real matrix:

cosgg) —sSin(pp) 0 0
sin(@g)  cosip) 0 0
0 0 cospg) —sin(@g)
0 0 singg)  cosgpg)

We have an actiop of 77 on Gg:
¢:T? x Gy — Go, (B, (X, W)) — (B, (X, W)) = (X, BW), (19)

where BW stands for the product of theg4x 4¢ matrix B given in (18) by the column
vectorW e HY = R*. Note that the actiop commutes witl (see(17)) and bothA and
o, preserve the metric and are tri-holomorphic. Therefffeglso acts on the hyperdler
quotientL\ (1?)~1(&) by tri-holomorphic isometries.

In the next theorem we give the explicit description of the moment map together with
properties of thg?-action.

Theorem 6.1. Let Gy = R® x (R¥ xg HY) be a hyper-Kiihler Lie group, s +k = 4p, 6 €
M(k, q; k), L the connected closed abelian isotropic subgroup L C R¥ defined above and
A, ¢ as in (17) and (19) Then:

(1) The expression of the moment map is

1 1L,
u(X, W) = —ImX1+ézeéwﬁiWﬁ,...,—ImX;—i—EZOfgW,giWﬁ ,
p=1 B=1
(20)

for (X, W) € Gy.
(2) We have the following diffeomorphisms:

L\() '@ = RYMY foranyg e Impf,  L\Gy = RWTY

(3) The torus T? acts on L\(u?)~Y(€) by tri-holomorphic isometries. If | = p = q, the
action of T4 on the 4q-dimensional quotient has a unique fixed point.
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Proof. We start by proving part (2). In order to do it we will find global coordinates on
L\(u?)~1(¢) andL\Gy. For (X, W) € Gy, (T, 0) € L, set

P l
X = Z eq(Xq + byi + sqj + pak), T = Z twey, (22)
a=1 a=1
q
W= Z Saltta + Yai + 2o j + wok). (22)
a=1

It follows that (xo, by, sy, py, ug, yg, 28, wg), Witha =1+1,....,p,y=1,...,p, B=
1,...,q, are global coordinates dn\ G, and thereford.\ G is diffeomorphic taR*7+4—,
Using the fact that the hypercomplex structure corresponds to

J1 =R, Jo=R_j, J3=R_
and that the metrig is such that the real basis

{ea, eqi, eq ), eqk, fﬁs fﬁl’ fﬁ]? fﬁks l<acx P> 1< B = q}

is orthonormal, we get, usintheorem 4.1the following expressions for the moment maps
u?/, y =1, 2, 3, in terms of the real coordinates &i¥ andH?:

q

1 i
1 2 2 2 2
-y bata+§§ to | Y055+ v — 25— wh)
O{:l O{:l ﬂ:l

1§ (X, W)(T)

! q
1 2,2 2 2
8 T,; _ba+2;9g(uﬁ+yﬁ_Zﬂ_wﬁ) e |,

1(X, W)(T)

l / q
—Zsata—}—Zta Zeg(—uﬂwﬁ—}-zlsyﬁ)
a=1 a=1 ﬁ:l
/ q
=g | TD | —sat+ D O5(—upws +257p) | ea | ,
a=1

p=1

1 1 q
RS, WUT) = = pata+ D _ta | Y 05(upzp + wpyp)
a=1 a=1 B=1

l q
=g |TY | —pat Y 04upzp+wpyp) | ea |
a=1 p=1
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or, equivalently(20) holds and part (1) follows. Onu)~1(£) one has the following rela-
tions:

1 q
ba+ (E)a = 5 > O5(uf + v5 — 2§ — wf),
p=1

q q
Sot (EDa = — Y O5(upwp —2pyp).  pat+ (=Y _ Ofupzp+ wpyp),
=1 =1

foranya =1...,1,wheret; = Zét:l(gj)aea, j=1,2 3,andwethink of = &1i + &2/ +
&3k as an element df® Im H by means of the identification betweeand[* given by the
restriction ofgy to [. Thus, one has that{, b,, sy, py, ug, y, 28, wg), Witha =1, ..., p,
y=I14+1....p,B=1,...,q, are global coordinates op{)~(¢).

Since the action oR! leavesx,, b, s,, p,, y > [ + 1, invariant, and rotates the co-
ordinatesug, yg, zg, wg, B =1,...,q, one has that,, b,, s,, p,. ug, yg, 28, wg), With
y=1+1....p,=1,...,¢q, are global coordinates dn\(u”)~1(£). It follows that the
quotient space is diffeomorphic RffP+4—4

For part (3), it follows from(19) that:

p(B)(X, W) = (X, BW),
B e T9,(X, W) € Gy. Since the moment may’ satisfies

1 (@(B)(X. W) = n’(X, W),
theng preserves(?)~1(£). In particular, the hyper-&hler quotient admits a tri-holomorphic
action of the torug.

Assume nextthdt= p = g, hencd @ J1l @ Jol @ J3l = R*. Sett = £1i + &) + &3k,
where

1
£ = (Edacacl, j=123
a=1

We will considerg € R4 by means of the inclusich— J1&1 + J2&2 + J3&3. Letnw be the
natural projection fromy?)~1(£) onto L\ (u?)~1(). If (X, W) € (u?)~1(&), thenz(X, W)
is a fixed point for the action df? if and only if

(V,0)- (X, w)-(v,oy t-(x,w)teL

for everyV € R9. We will show thatr(X, W) = (&, 0), that is (&, 0) is the unique fixed
point. Using(19) and (12)we calculate
(V.0)- (X, W)- (VO - (X, W)™ = (V.0)- (V. W — (=V)) - W)
=0,V -W-W)
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which liesinLifand only if V- W = W for everyV € R4, henceW = 0. Since §,0) €
(u?)~1(#) it follows thatw, (V, X) = g(&4, V) foreveryV e [,a = 1, 2, 3. Sincel & J1| &
Jol & Jal = R*, the | component of/, X is &, or, equivalently,X + & € [. Therefore
(X, 0) = n(&, 0), as asserted. I

Using the fact that the quotient admits a tri-holomorphfeaction, we can obtain the
local expression of the hyperakler metric in terms of the structure constants of the Lie
groupGy.

Observe that, if = p, the quotient has dimensiog 4hus by{10,15]the induced hyper-
Kahler metric can be locally written as follows:

1 1
2 Hpydrg - dry + 2 HPY (dtg + Qs - drs)(dr, + @y - dr), (23)

whereg, y =1, ..., q, (HP") is the inverse of the matrixHg,). The Killing vector fields
% generate th&?-action, 4, rg are defined as if15) and we use the Einstein sum-

mation convention. If < p, the quotient splits as Riemannian product of the flat Eu-
clidean spac®*~4 by a 4;-dimensional hyper-Ehler manifold with a tri-holomorphic
T4-action.

Theorem 6.2. The local expression of the hyper-Kdihler metric on the quotient L\(u?)~1(£)
has the form h = hg + h1, where hg is the Euclidean metric on R*"=* and hy is given by
(23), with

~~ 1
Hg, = (60")p, + s Spy- (24)

0 is the q x | matrix obtained from 0 by deleting the last p — | columns, 6" is its transpose
and rg = |rg|.

Proof. The actiond of L on Gy (recall(17)) in the coordinatesx, by, So, Pa> Vg, Ig) IS
given by

L X G9 - 697 (T‘v (Xon wﬁv rﬂ)) - (Xa + ton wﬁ + 2<9ﬁ7 T)a rﬂ)s

withae=1,...,p,to =0fora>1,=1,..., g andyg, rg are defined as i(i5).
The previous action leaves

P
Tﬂzwﬁ—ZZnga, B=1....q,

a=1

invariant and% are Killing vector fields for the quotient hyperakler metric and generate
the T7-action induced by19).
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on (1%)~1(¢) one has

IM Xg + &y = = Zeﬂrﬂ, a=1,...,1,
,3 1

whereg, = (£1)qi + (£2)aj + (£3)ok, SO the metric ong?)~1(0) is given by

2
de2+ Z d(Im X,)* + Z Zeﬂdrﬂ

a=Il+1 a 1 =
+ = Z( drd + rp(dyps + 5 - drﬂ)>

Projecting orthogonally onto the space spanned by the Killing vector%élds =1...,1,
one gets that, locally, the metric on the quotient is giver by ho + h1, where

p
ho= Y (dxZ +d(ImX,)?)
a=Il+1

andh; is given by(23) with the matrixH as in(24). O
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